Атомные станции Малые АЭС Наплавная АЭС Атомные станции теплоснабжения

Развитие экономики любой страны, на настоящем этапе развития цивилизации, невозможна без использования энергии. Наиболее универсальная форма энергии - электричество. Оно вырабатывается на электростанциях и распределяется между потребителями посредством электрических сетей коммунальными службами. Производительность - и, в конечном счете, прибыль - в значительной степени зависит от стабильности подачи энергии. Прекращение подачи электроэнергии парализует все виды деятельности. Наличие энергии - одно из необходимых условий для решения практически любой задачи в современном мире.

Атомные станции

Для практического использования энергии, освобождающейся при осуществлении цепной ядерной реакции деления, необходимо преобразование кинетической энергии осколков ядер урана в другие виды энергии. Наиболее удобной для осуществления дальнейших преобразований является электрическая энергия. Для ее получения с помощью реактора служат атомные электростанции (АЭС).

Атомная станция (АС) - ядерный реактор (реакторы), с комплексом систем, устройств, оборудования, сооружений и персоналом, необходимых для производства энергии в заданных режимах и условиях применения, располагающиеся в пределах конкретной территории. Обычно под термином атомная станция (АС), если это особо не оговаривается, понимается любой из объектов, т.е. АЭС, АСТ, АЭТС. Атомная электрическая станция (АЭС) - электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Мощность крупнейших действующих многоблочных АЭС (1998) св. 9 ГВт.

Атомная станция теплоснабжения (АСТ) - атомная станция, предназначенная для производства тепловой энергии для целей отопления и горячего водоснабжения.

Атомная энерготехнологическая станция (АЭТС) - атомная станция, предназначенная для производства электроэнергии и энергии для технологических целей. АТЭЦ - атомная тепло-электроцентраль.

Перспективы АЭС связаны с тем, что себестоимость электроэнергии, вырабатываемой на крупных атомных электростанциях, ниже себестоимости электроэнергии, вырабатываемой на тепловых электростанциях (хотя и выше, чем на гидроэлектростанциях).

Масштабы строительства, прогнозы развития атомных электростанций (АЭС) и теплоэлектроцентралей (АТЭЦ) и станций теплоснабжения (АСТ) во многих странах свидетельствуют о возрастающей, а для некоторых стран решающей роли ядерной энергетики в электроснабжении и выработке тепла среднего и низкого потенциала для промышленного и коммунально-бытового теплоснабжения, а также опреснения морской воды. Тепловая энергия. Атомы веществ находятся в постоянном движении. В твердых телах атомы удерживаются в приблизительно фиксированных положениях относительно друг друга. Однако все они вибрируют, причем интенсивность вибрации повышается с увеличением температуры. Энергия, связанная с этой вибрацией, называется тепловой. В жидкостях и газах два или более атомов могут образовывать друг с другом химические комбинации в форме молекул. Эти молекулы имеют вибрационную энергию, но в жидком состоянии они также могут иметь поступательную энергию, связанную с их движением в пространстве, и вращательную энергию, связанную с их вращением

По данным информационной системы МАГАТЭ по состоянию на 25 января 2005 года во всем мире эксплуатировалась 441 атомная электростанция с суммарной установленной электрической мощностью 367249 ГВт(э), 26 атомных электростанций находились в процессе строительства. В атомной энергетике эксплуатируются ядерные реакторы различного типа (Табл.1).

Табл.1 Типы ядерных реакторов, находящиеся в эксплуатации

В данной лекции мы коротко остановимся на анализе современного состояния развития атомной энергетики (включая ядерные комплексы) и ядерного транспорта.

Россия до недавнего времени по целому ряду причин, прежде всего из-за огромных запасов традиционного энергетического сырья, вопросам развития использования возобновляемых источников энергии в энергетической политике России уделялось сравнительно мало внимания. В последние годы ситуация стала заметно меняться. Необходимость борьбы за лучшую экологию, новые возможности повышения качества жизни людей, участие в мировом развитии прогрессивных технологий, стремление повысить энергоэффективность экономического развития, логика международного сотрудничества – эти и другие соображения способствовали активизации национальных усилий по созданию более зеленой энергетики, движению к низкоуглеродной экономике.

Объем технически доступных ресурсов возобновляемых источников энергии (ВЭИ) в Российской Федерации составляет не менее 24 млрд. тонн условного топлива. Доля электроэнергии, вырабатываемой в России с использованием возобновляемых источников, в 2008 году составила около 1% без учета ГЭС мощностью свыше 25 МВт, а с учетом последних – свыше 17%. Удельный вес  производства тепловой энергии, полученной на базе ВИЭ, был около 3%, или около 2000 млн. Гкал.

Например земля каждый день получает от Солнца в тысячу раз больше энергии, чем ее вырабатывается всеми электростанциями мира. Задача здесь состоит в том, чтобы научиться практически, использовать хотя бы ее небольшое количество. Нельзя утверждать, что широкомасштабное использование солнечной энергии не будет иметь никаких последствий для окружающей среды, но все же они будут несравненно меньшими, чем в традиционной энергетике.

В администрировании энергосистем в последнее время принято говорить о так называемом плане «ГОЭЛРО-2». Он представляет собой ликвидацию РАО «ЕЭС России» в 2008 году и создание на его базе нескольких генерирующих компаний ( оптовых генерирующих компаний и территориальных генерирующих компаний). До 2020 года генерирующие компании должны осуществить размещение новых (или замену старых) энергетических мощностей на территории Российской Федерации. Осуществляют работу по реализации плана «ГОЭЛРО-2» инжиниринговые компании. Предполагается, что это даст толчок к дальнейшему развитию энергетики России.

АЭС России В настоящее время «большая» энергетика России базируется на атомных электростанциях (АЭС), использующих канальные (типа РБМК) или корпусные (типа ВВЭР) реакторы. Основным компонентом АЭС является реакторная установка. Основная часть АЭС России снабжена реакторами на тепловых нейтронах Все атомные электростанциями России входят в единую энергокомпанию при концерне «Росэнергоатом».

Приведём основные характеристики российских АЭС.

Балаковская АЭС — Молодая российская атомная электростанция с 4-мя энергоблоками ВВЭР- 1000 третьего поколения.

Билибинская атомная теплоэлектроцентраль - первенец атомной энергетики в Заполярье, уникальное сооружение в центре Чукотки, обеспечивающее жизнедеятельность горнорудных и золотодобывающих предприятий этого края

Единая энергосистема России имеет неоднородную сетевую структуру. В ее рамках лишь пять из семи объединенных энергосистем (соответствующие основным территориально-экономическим районам - Северо-Запад, Центр, Средняя Волга, Урал, Северный Кавказ) включены на параллельную работу с общей частотой электрического тока и обмениваются электроэнергией по линиям межсистемной связи высокого и сверхвысокого напряжения. Объединенная энергосистема (ОЭС) Дальнего Востока не имеет электрических связей с остальной частью ЕЭС, работает изолированно и лишь условно причисляется к Единой энергосистеме, поскольку основные линии связи ОЭС Сибири с Европейской частью ЕЭС после распада СССР остались на территории Казахстана, и в силу незначительных размеров существующих перетоков мощности между ОЭС Сибири и Европейской частью ЕЭС, ОЭС Сибири также может рассматриваться как изолированно работающая часть ЕЭС.
Кольская атомная электростанция