Электропроводность полупроводников Физика атомного ядра и элементарных частиц

Элементы квантовой механики и физики атомов, молекул, твердых тел

Фотопроводимость полупроводников. Экситоны

Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hν ≥ ∆E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 15.10, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок {в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная электронами и дырками.

Если полупроводник содержит примеси, то фотопроводимость может

Рис. 15.10.

возникать и при hν < ∆E: для полупроводников с донорной примесью фотон должен обладать энергией hν ≥ ∆ED, а для полупроводников с акцепторной примесью hν ≥ ∆EA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 15.10, б) или из валентной зоны на акцепторные уровни в случае полупроводника р-типа (рис. 15.10, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для полупроводников р-типа.

Из условия hν = hc/λ можно определить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается:

для собственных полупроводников

λ0 = hc/∆E

(15.7)

для примесных полупроводников

λ0 = hc/∆Eп

(15.8)

(∆Eп - в общем случае энергия активации примесных атомов).

Учитывая значения ∆E и ∆Eп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников - на инфракрасную.

Тепловое или электромагнитное возбуждение электронов и дырок может и не сопровождаться увеличением электропроводности. Одним из таких механизмов может быть механизм возникновения экситонов. Экситоны представляют собой квазичастицы — электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны электрически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория не смогла объяснить безынерционность фотоэффекта, установленную опытами.
Примесная проводимость полупроводников