Электропроводность полупроводников Физика атомного ядра и элементарных частиц

Элементы квантовой механики и физики атомов, молекул, твердых тел

Контактная разность потенциалов

Если привести два разных металла в соприкосновение, между ними возникает разность потенциалов, которая называется контактной. В результате в окружающем металлы пространстве появляется электрическое поле.

Контактная разность потенциалов обусловлена тем, что при соприкосновении металлов часть электронов из одного металла переходит в другой. В верхней части рис. 15.16 изображены два металла до приведения их в соприкосновение и даны их графики потенциальной энергии электрона. Уровень Ферми в первом металле лежит, по предположению, выше, чем во втором. . В нижней части рис. 15.16 изображены два металла после приведения их в соприкосновение и даны их графики потенциальной энергии электрона. Естественно, что при возникновении контакта между металлами электроны с самых высоких уровней в первом металле станут переходить на более низкие свободные уровни второго металла. В результате потенциал первого металла возрастет, а второго — уменьшится. Соответственно потенциальная энергия электрона в первом металле уменьшится, а во втором

увеличится (напомним, что потенциал металла и потенциальная энергия электрона в нем имеют разные знаки). В статистической физике доказывается, что условием равновесия между соприкасающимися металлами (а также между полупроводниками или металлом и полупроводником) является равенство полных энергий, соответствующих уровням Ферми. При этом условии уровни Ферми обоих металлов располагаются на схеме на одинаковой высоте. На рис. 15.16 видно, что в этом случае потенциальная энергия электрона в непосредственной близости к поверхности первого металла (точки А и В на рис.15.16, б) будет на еφ2 - eφ1 меньше, чем вблизи второго металла. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна

Рис.15.16.

∆φ' = (eφ2 – eφ1)/e = φ2 - φ1

(15.11)

Разность потенциалов (15.11), обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.

Если уровни Ферми для двух контактирующих металлов неодинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенциалов которая, как следует из рисунка, равна

∆φ'' = (EF1 – EF2)/e.

(15.12)

В квантовой теории доказывается, что причиной возникновения внутренней контактной разности потенциалов является различие концентраций электронов в контактирующих металлах. ∆φ'' зависит от температуры Т контакта металлов (поскольку наблюдается зависимость ЕF от Т), обусловливая термоэлектрические явления. Как правило, ∆φ'' << ∆φ'. Если, например, ввести в соприкосновение три разнородных проводника, имеющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она не зависит от природы промежуточных проводников. То же самое справедливо при любом числе промежуточных звеньев: разность потенциалов между концами цепи определяется разностью работ выхода для металлов, образующих крайние звенья цепи.

Значения внешней контактной разности потенциалов колеблются для различных пар металлов от нескольких десятых вольта до нескольких вольт. Мы рассмотрели контакт двух металлов. Однако контактная разность потенциалов возникает и на границе между металлом и полупроводником, а также на границе между двумя полупроводниками.

Для замкнутой цепи, составленной из произвольного числа разнородных металлов и полупроводников, с одинаковой температурой всех спаев, сумма скачков потенциалов будет равна нулю. Поэтому ЭДС в цепи возникнуть не может.

Термоэлектрические явления

Термоэлектрическими называют такие явления, в которых проявляется специфическая связь между тепловыми и электрическими процессами в металлах и полупроводниках.

Явление Зеебека. Зеебек(1821 г) обнаружил, что если спаи 1 и 2 двух разнородных металлов, образующих замкнутую цепь (рис.15.17), имеют неодинаковую температуру, то в цепи течет электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока.

В замкнутой цепи для многих пар металлов электродвижущая сила прямо пропорциональна разности температур в контактах

Рис. 15.17.

Етермо = α AB (T2 – T1)

(15.13)

Эта ЭДС называется термоэлектродвижущей силой. Причина возникновения термоэлектродвижущей ЭДС можно понять с помощью формулы (15.12), которая определяет внутреннюю контактную разность потенциалов на границе двух металлов. Так как положение уровня Ферми зависит от температуры, то при разных температурах контактов разными будут и внутренние контактные разности потенциалов. Поэтому сумма скачков потенциала на контактах будет отлична от нуля, что и приводит к возникновению термоэлектрического тока. При градиенте температуры происходит также диффузия электронов, которая тоже обуславливает термо-ЭДС.

Явление Зеебека используется:

1) для измерения температуры с помощью термопар – датчиков температур, состоящих из двух соединенных между собой разнородных металлических проводников. Таких спаев в термопаре может быть несколько;

2) для создания генераторов тока с прямым преобразованием тепловой энергии в электрическую. Их используют, в частности, на космических кораблях, спутниках в качестве бортовых источников электроэнергии;

3) для измерения мощности инфракрасного, видимого и ультрафиолетового излучений.

Явление Пельтье. Это явление (1834 г.) можно считать обратным термоэлектричеству. Если через термопару пропустить электрический ток от постороннего источника (рис. 15.18), то один из спаев будет нагреваться, а другой охлаждаться. Теплота, выделенная на одном спае (+Q), будет равна теплоте, поглощенной на другом (-Q). При изменении направления тока роль спаев изменится.

Количество выделившейся или поглощенной теплоты пропорционально заряду q, протекшему через спай:

Рис. 15.18.

Q = Пq

(15.14)

где П — коэффициент Пельтье, зависящий от соприкасающихся материалов и их температуры.

Закономерность (15.14) позволяет определить количество теплоты Пельтье, которое отлично от количества теплоты Джоуля — Ленца, так как в последнем случае оно пропорционально квадрату силы тока.

Явление Пельтье используют для создания холодильников, термостатов, установок микроклимата и т. п. Изменяя силу тока в этих устройствах, можно регулировать количество выделяемой или поглощаемой теплоты, а изменяя направление тока, можно преобразовать холодильник в нагреватель и наоборот.

В случае контакта двух веществ с одинаковым видом носителей тока (металл — металл, металл — полупроводник n-типа, два полупроводника n-типа, два полупроводника р-типа) эффект Пельтье имеет следующее объяснение. Носители тока (электроны или дырки) по разные стороны от спая имеют различную среднюю энергию (имеется в виду полная энергия — кинетическая плюс потенциальная). Если носители, пройдя через спай, попадают в область с меньшей энергией, они отдают избыток энергии кристаллической решетке, в результате чего спай нагревается. На другом спае носители переходят в область с большей энергией; недостающую энергию они заимствуют у решетки, что приводит к охлаждению спая.

В случае контакта двух полупроводников с различным типом проводимости эффект Пельтье имеет другое объяснение. В этом случае на одном спае электроны и дырки движутся навстречу друг другу. Встретившись, они рекомбинируют: электрон, находившийся в зоне проводимости n-полупроводника, попав в р-полупроводник, занимает в валентной зоне место дырки. При этом высвобождается энергия, которая требуется для образования свободного электрона в n-полу-проводнике и дырки в р-полупроводнике, а также кинетическая энергия электрона и дырки. Эта энергия сообщается кристаллической решетке и идет на нагревание спая. На другом спае протекающий ток отсасывает электроны и дырки от границы между полупроводниками. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок (при этом электрон из валентной зоны р-полупроводника переходит в зону проводимости n-полупроводника). На образование пары затрачивается энергия, которая заимствуется у решетки, — спай охлаждается.

Явление Томсона. Это явление было предсказано У. Томсоном (Кельвин) в 1856 г. При прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление после экспериментального подтверждения получило название явления Томсона и объясняется по аналогии с явлением Пельтье.

Так как в более нагретой части проводника электроны имеют бóльшую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория не смогла объяснить безынерционность фотоэффекта, установленную опытами.
Примесная проводимость полупроводников