Электропроводность полупроводников Физика атомного ядра и элементарных частиц

Элементы квантовой механики и физики атомов, молекул, твердых тел

Модели ядер

В теории атомного ядра важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра.

Ограничимся кратким рассмотрением двух моделей ядра: капельной и оболочечной.

Капельная модель. В ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности процесс деления тяжелых ядер.

Оболочечная модель. В данной модели считается, что каждый нуклон движется в усредненном поле остальных нуклонов ядра. В соответствии с этим имеются дискретные энергетические уровни, заполненные нуклонами с учетом принципа Паули. Эти уровни группируются в оболочки, в каждой из которых может находиться определенное число нуклонов. Полностью заполненные оболочки образуют особо устойчивые структуры. Таковыми являются ядра, имеющие, в соответствии с опытом, число протонов, либо нейтронов (либо оба эти числа) 2, 8, 20, 28, 50, 82, 126. Эти числа и соответствующие им ядра называют магическими.

Кроме предсказания магических чисел, эта модель позволила объяснить спины основных и возбужденных состояний ядер, а также их магнитные моменты.

16.4. Радиоактивность

Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся: 1) α-распад, 2) β-распад (в том числе электронный захват), 3) γ-излучение ядер, 4) спонтанное деление тяжелых ядер, 5) протонная радиоактивность.

Радиоактивность, наблюдающаяся у ядер, существующих в природных условиях, называется естественной. Радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одним и тем же законам. Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, — дочерними.

Почти 90 % из 2500 известных атомных ядер нестабильны. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержат избыток нейтронов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто А. Беккерелем (1896 г.), который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года М.и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий. В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. На рис. 16.2 изображена схема эксперимента, позволяющая обнаружить сложный состав радиоактивного излучения. В магнитном поле α- и β-лучи испытывают отклонения в противоположные стороны, причем β-лучи отклоняются значительно больше. γ-лучи в магнитном поле вообще не отклоняются.

Рис. 16.2. Схема опыта по обнаружению α-, β- и γ-излучений.

 К – свинцовый контейнер, П – радиоактивный препарат,

Ф – фотопластинка.

 

 

 

Закон радиоактивного распада

Рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Число ядер, распадающихся за малый промежуток времени dt, пропорционально как числу N имеющихся ядер в этот момент, так и dt:

(16.16)

где -dN — убыль числа ядер за время dt (это и есть число распавшихся ядер за промежуток dt), λ — постоянная распада, величина, характерная для каждого радиоактивного препарата. Интегрирование уравнения (16.16) дает

(16.17)

где N0 — число ядер в момент t = 0, N — число нераспавшихся ядер к моменту t. Соотношение (16.17) и называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (16.16) видно, что эта величина |dN / dt| = λN. Ее называют активностью А. Таким образом, активность

(16.18)

Ее измеряют в беккерелях (Бк), 1 Бк = 1 распад/с; а также в кюри (Ки), 1 Ки = 3,7 • 1010 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада Т и средним временем жизни τ ядра.

Период полураспада Т — это время, за которое распадается половина первоначального количества ядер. Оно определяется условием N0 / 2 = N0e-λТ, откуда

(16.19)

Среднее время жизни τ. Число ядер δN(t), испытавших распад за промежуток времени (t, t + dt), определяется правой частью выражения (16.16): δN(t) = λN dt. Время жизни каждого из этих ядер равно t. Сумма времен жизни всех N0 имевшихся первоначально ядер определяется интегрированием выражения tδN(t) по времени от 0 до ∞. Разделив сумму времен жизни всех N0 ядер на N0, мы и найдем среднее время жизни τ рассматриваемого ядра:

Остается подставить сюда выражение (16.17) для N(t) и выполнить интегрирование по частям, после чего мы получим:

τ =1 / λ

(16.20)

Как следует из (16.17) τ равно промежутку времени, за которое первоначальное количество ядер уменьшается в е раз.

Сравнивая (16.19) и (16.20), видим, что период полураспада Т и среднее время жизни τ имеют один и тот же порядок и связаны между собой формулой

(16.21)

Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементами с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность (примерно 2—30 мА/лм) и не нуждаются во внешнем источнике э.д.с. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, купроксные, сернисто-серебряные и др.
Примесная проводимость полупроводников