Введение в математический анализ Определённый интеграл Правила вычисления неопределенных интегралов

Курс высшей математики Примеры решений и лекции

Первообразная и неопределённый интеграл.

Первообразная функция.

 Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F¢(x) = f(x).

 Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

12.2. Неопределенный интеграл.

 Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

 Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

 Свойства:

1.

2.

3.

4.  где u, v, w – некоторые функции от х.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

12.3. Таблица основных интегралов.

 Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

 

 Интеграл

 Значение

 Интеграл

 Значение

1

 -ln½cosx½+C

9

 ex + C

2

 ln½sinx½+ C

10

 sinx + C

3

 

11

 -cosx + C

4

 

12

 tgx + C

5

13

 -ctgx + C

6

ln

14

 arcsin + C

7

15

8

 

16

 

12.4. Непосредственное интегрирование.

 Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

 Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования  можно сделать вывод, что искомый интеграл равен , где С – некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

 Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

 Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Основные методы интегрирования. Способ подстановки (замены переменных). Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:

Интегрирование некоторых тригонометрических функций. Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида . Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегрирование некоторых иррациональных функций. Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Теорема: (Теорема Ньютона – Лейбница)

 Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

это выражение известно под названием формулы Ньютона – Лейбница.

 Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция  - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то

при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:

  Тогда .

А при х = b:  

Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:

Теорема доказана.


Производная функции, ее геометрический и физический смысл