Перенос баз данных с одного SQL Server на другой Изменения в системе защиты SQL Server Новые средства разработки Новые элементы программирования на языке Visual Basic Редактирование и анализ данных с помощью запросов

Компьютерная анимация Компьютерная анимация

Моделирование при помощи патчей

Моделирование при помощи патчей - еще один великолепный способ создания персонажей. Патчи - это фрагменты поверхности, определяемые кривыми. Кривые могут быть линейными, фундаментальными, В-сплайнами или Безье-кривыми. Обычно патчи имеют вид четырехугольника или совокупности четырехугольников. Как уже говорилось, кривые и поверхности определяются их порядком, от которого зависит возможность управления ими.

Линейные кривые (рис. 2.30). Это кривые первого порядка, состоящие из последовательности отрезков, соединяющих управляющие вершины. Кривые, определяющие поверхность, эквивалентны ребрам полигонального каркаса.

Приемы моделирования

Фундаментальные кривые (рис. 2.31). Это кривые второго порядка, проходящие через управляющие вершины, в каждой из которых задана касательная. Пат-чи, созданные на основе таких кривых, имеют четыре ряда вершин по каждому направлению, итого 16 точек. Управляющие вершины выходят за границы патча. Это необходимо из-за погрешностей интерполяции в конечных точках; дополнительные вершины определяют форму кривой.

Рис. 2.30. Линейная кривая

В-сплайны (рис. 2.32). Кривые третьего порядка, которые редко проходят через управляющие вершины. Из-за того, что управляющие вершины находятся на некотором расстоянии от кривой, манипулирование поверхностью может быть затруднено. В кривых данного типа вершины называются узлами. Как и в случае с фундаментальными кривыми, интерполяция выполняется не далее конечных точек, то есть для определения кривизны поверхности патча требуются дополнительные вершины, расположенные за его границами.

Кривые Безье (рис. 2.33). Это тоже кривые третьего порядка, аналогичные используемым в популярных программах рисования типа Adobe Illustrator. Кривая проходит через каждую управляющую вершину, в которой задана касательная; имеются два манипулятора, позволяющие управлять формой кривой по обе стороны от вершины. С их помощью можно выполнить интерполяцию в конечных точках, поэтому вершины располагаются на краях патча.

Рис. 2.31. Фундаментальная кривая

Рис. 2.32. В-сплайн

Одно из преимуществ кривых Безье состоит в том, что манипуляторы позволяют более гибко управлять кривизной и формировать весь спектр поверхностей - от гладких до покрытых глубокими складками. Другим достоинством является ограниченность области действия манипуляторов: изменения на одном фрагменте модели не влияют на остальную ее часть.

Кроме того, при моделировании широко используются NURBS-кривые (рис. 2.34).

Рис. 2.33. Кривая Безье

Рис. 2.34. Неоднородная форма В-сплайна


Дизайн, инженерная и Web графика