Перенос баз данных с одного SQL Server на другой Изменения в системе защиты SQL Server Новые средства разработки Новые элементы программирования на языке Visual Basic Редактирование и анализ данных с помощью запросов

Конспект лекций по начертательной геометрии Черчение оглавление

ПОЗИЦИОННЫЕ ЗАДАЧИ

Задачи, в которых определяется относительное положение или общие элементы геометрических фигур, называются позиционными. К ним относятся задачи на принадлежность точки и линии поверхности, задачи, выражающие отношения между геометрическими фигурами, задачи на определение общих элементов геометрических фигур.

ЗАДАЧИ, ВЫРАЖАЮЩИЕ ОТНОШЕНИЯ МЕЖДУ ФИГУРАМИ

Относительное положение прямых

Две прямые в пространстве могут быть параллельными, пересекающимися и скрещивающимися.
а. Прямые параллельные
Если прямые a и b параллельны, то их одноименные проекции параллельны, т.е. Примеры позиционных и метрических задач на плоскость Пример. В плоскости, заданной треугольником АВС, построить точку D Начертательная геометрия
а b a1 b1 a2 b2
(рис. 4.1). Для прямых общего положения справедливо и обратное утверждение:
a1 b1 a2 b2 а b
Таким образом, для того, чтобы судить по чертежу о параллельности двух прямых общего положения, достаточно иметь любую пару проекций каждой из них. Несколько иначе обстоит дело в случае, если прямые являются линиями уровня. Линии уровня параллельны, если их проекции на параллельную им плоскость проекций параллельны. Например, горизонтали h и h' (рис. 4.2) параллельны, так как параллельны их проекции h1 и h'1, а профильные прямые (АВ) и (СD)(рис. 4.3) не параллельны, так как их проекции на П3 не параллельны.
pr4_1.JPGРис. 4.1pr4_2.JPGРис. 4.2pr4_3.JPGРис. 4.3

б. Прямые пересекающиеся
Если прямые с и d пересекаются, то точка К их пересечения проецируется в точки К1 и К2 пересечения их одноименных проекций.
Очевидно, что К1 и К2 принадлежат одной линии связи (рис. 4.4 а, б). Справедливо и обратное утверждение: К1 = с1 d1 и K2= c2 d2 c d, если К1 и К2 принадлежат одной линии связи.
в. Прямые скрещивающиеся
Прямые непараллельные и непересекающиеся называются скрещивающимися. Один из возможных вариантов чертежа скрещивающихся прямых показан на рис. 4.5, где l m, так как l не параллельна m и l не пересекается с m.
pr4_5.JPGРис. 4.5

Точка пересечения горизонтальных проекций скрещивающихся прямых является горизонтальной проекцией двух горизонтально конкурирующих точек 1 и 2, принадлежащих прямым l и m. Точка пересечения фронтальных проекций скрещивающихся прямых является фронтальной проекцией двух фронтально конкурирующих точек 3 и 4. По горизонтально конкурирующим точкам 1 и 2 определяется взаимное положение прямых l и m относительно П1. Фронтальная проекция 12 точки 1, принадлежащей прямой l, расположена выше, чем фронтальная проекция 22 точки 2, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена над прямой m.
По фронтально конкурирующим точкам 3 и 4 определяется взаимное положение прямых l и m относительно фронтальной плоскости проекций. Горизонтальная проекция 41 точки 4, принадлежащей прямой l, расположена ниже, чем горизонтальная проекция 31 точки 3, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена перед прямой m.

Дизайн, инженерная и Web графика