Перенос баз данных с одного SQL Server на другой Изменения в системе защиты SQL Server Новые средства разработки Новые элементы программирования на языке Visual Basic Редактирование и анализ данных с помощью запросов

Конспект лекций по начертательной геометрии Черчение оглавление

КОМПЛЕКСНЫЕ ЗАДАЧИ


ПРИМЕРЫ РЕШЕНИЯ КОМПЛЕКСНЫХ ЗАДАЧ
Задача 1. Из точки А опустить перпендикуляр n на прямую l общего положения (рис. 6.1, а).
pr6_1.JPG Рис.6.1

Анализ. Искомая прямая n должна удовлетворять двум условиям:
1. Проходить через точку А и быть перпендикулярной прямой l. Этому условию соответствует множество прямых, образующих плоскость , проходящую через точку А и перпендикулярную прямой l.
2. Проходить через точку А и пересекать прямую l. Этому условию удовлетворяет множество прямых, образующих плоскость Г.
Применение символики теории множеств позволяет записать этот анализ в следующем виде.
1. Искомое - прямая n;
2. {n:(A n l)} = ;
3. {n:(A n l)} = Г.
Алгоритм:
1) A (f h) l (f l и h l) ;
2) Г(A,l) «Сопротивление материалов» — это раздел «Технической механики», в котором излагаются теоретико-экспериментальные основы и методы расчета наиболее распространенных элементов конструкций на прочность, жесткость и устойчивость.
3) n = Г. Исследование. Задача имеет единственное решение, так как две плоскости пересекаются по одной прямой (собственной или несобственной).
Построение. Графическая реализация алгоритма показана на рис. 6.1, а. Построена плоскость (f h), перпендикулярная прямой l, так как f l и h l. При построении прямой n(АВ) пересечения плоскостей и Г найдена только одна точка В искомой прямой, так как точка А принадлежит обеим плоскостям. Точка В определена как точка пересечения прямой l с плоскостью (f h).

3адача 2. Через точку К, принадлежащую прямой d, провести прямую m, перпендикулярную прямой d и пересекающую прямую с (рис. 6.1, б).
Анализ . На прямую m наложены 2 условия:
1. Прямая m должна проходить через точку К перпендикулярно прямой d. Множество таких прямых составляют плоскость, например, .
2. Прямая m должна проходить через точку К и пересекать прямую с. Множество таких прямых составляют плоскость, например, .
1. Искомое - прямая m;
2. {m:(K m d)}= ;
3. {m:(K m c)}=
Алгоритм: 1. К (h f) d;
2. (c,К);
3. = m.
Исследование. Задача имеет единственное решение, так как искомая прямая и является результатом пересечения двух плоскостей. Построение понятно из чертежа 6.1, б.

3адача 3 . Через точку А провести прямую с, параллельную плоскости Г(a b) и наклоненную под углом к горизонтальной плоскости уровня (рис. 6.2).
pr6_2.JPG Рис.6.2

Анализ. На искомую прямую с наложены два условия:
1. Прямая с должна проходить через точку А и располагаться параллельно плоскости Г. Этому условию удовлетворяет множество прямых, проходящих через точку А и параллельных плоскости Г(а b).
2 Прямая с, проходя через точку А, должна быть наклонена к плоскости под углом . Этому условию удовлетворяет множество прямых, проходящих через точку А и наклоненных к под углом . Любая прямая этого множества является образующей прямого кругового конуса с вершиной в точке А.
1. Искомое - прямая с;
2. {c:(А c Г)} = Г' - плоскость;
3. {c:(А c = )} = Ф -конус.
Алгоритм.
1. А Г'(а' b') Г).
2. Ф(A,l = ) - конус с вершиной в точке А и образующими l.
3. c = Г' Ф.
Исследование. Задача может иметь два решения (как показано на чертеже), одно решение, если плоскость Г' будет касаться поверхности конуса, и ни одного решения, если плоскость Г' пересечет конус в одной точке (в вершине).
Построение. На рис. 6.2 показана графическая реализация алгоритма. Для построения линий пересечения плоскости Г' с поверхностью конуса Ф предварительно определена линия (1 - 2) пересечения плоскостей Г' и , через точки пересечения которой с окружностью основания конуса (точки 3 и 4) и вершину конуса проходят искомые образующие с и d.
На рис.6.3 и 6.4 приведены еще два примера решения комплексных задач. Там же приведены анализы и алгоритмы. Разберите решение этих задач самостоятельно.

pr6_3.JPG Рис.6.3pr6_4.JPG Рис.6.4

 

Дизайн, инженерная и Web графика