Математика Математический анализ Комплексные числа Дискретная математика Кривые второго порядка Линейная алгебра Элементы векторной алгебры Интегральное исчисление Дифференциальное исчисление

  Пусть в интеграле   нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

  Обозначим  = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

  Аналогичную теорему можно доказать для случая переменного нижнего предела.

  Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.

  Теорема: (Теорема Ньютона – Лейбница)

  Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

это выражение известно под названием формулы Ньютона – Лейбница.

 

  Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция  - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то

при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:

  Тогда .

А при х = b:  

Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:

Теорема доказана.

 

  Иногда применяют обозначение F(b) – F(a) = F(x).

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

  Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

  Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

 

Совокупность объектов, объединённых некоторым общим признаком, называют множеством, а сами объекты - элементами множества. Множества могут быть конечными, при этом все их элементы могут быть перечислены; и бесконечные. При этом множество задают путём указания характеристического свойства.

Математика примеры решения задач курсовые и типовые задания