Математика Математический анализ Комплексные числа Дискретная математика Кривые второго порядка Линейная алгебра Элементы векторной алгебры Интегральное исчисление Дифференциальное исчисление
 

 

 

  Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.

Пример 7 Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2

  Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi здесь Dxi = xi - xi-1.

  Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно  и .

  При стремлении к нулю шага разбиения l, эти суммы имеют общий предел:

Таким образом, объем тела может быть найден по формуле:

  Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию Q(x), что весьма проблематично для сложных тел.

 

Совокупность объектов, объединённых некоторым общим признаком, называют множеством, а сами объекты - элементами множества. Множества могут быть конечными, при этом все их элементы могут быть перечислены; и бесконечные. При этом множество задают путём указания характеристического свойства.

Математика примеры решения задач курсовые и типовые задания